Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Drug-like Peptides Show Promise in Treating 2 Blood Diseases

By Drug Discovery Trends Editor | May 6, 2016

Stefano Rivella, Ph.D., is a hematology researcher at The Children's Hospital of Philadelphia. Source:  The Children's Hospital of PhiladelphiaNew research suggests that synthetic peptides called minihepcidins may potentially treat two serious genetic blood diseases in children and adults. Although those diseases, beta-thalassemia and polycythemia vera, have opposite effects on red blood cell production, treating animals with minihepcidin helps to restore normal levels of red blood cells and reduces spleen enlargement. It also controls the accumulation of excess levels of iron in beta-thalassemia that often causes severe toxic effects.

“It seems counterintuitive that one compound could treat two diseases that are quite different, but by restricting iron absorption, it also helps to normalize red blood cell levels in animals,” said study leader Stefano Rivella, Ph.D., a hematology researcher and holder of the Kwame Ohene-Frempong Chair in Sickle Cell Anemia at The Children’s Hospital of Philadelphia (CHOP). “If these preclinical results translate to humans, this could represent a new treatment for both disorders.”

Rivella and colleagues published their study online today in the journal Blood.

The researchers used minihepcidins, modified versions of the naturally occurring hormone hepcidin that regulates iron. Minihepcidins are smaller than the full-length hormone but have long-term stability and long-lasting biological activity when administered to animals. Previous researchers showed that minihepcidin treatment can prevent iron overload in mouse models of hemochromatosis, a disease of excess iron absorption associated with low hepcidin production.

First author Carla Casu, Ph.D. from CHOP, along with Rivella and colleagues, investigated in the current study how minihepcidins affected beta-thalassemia and polycythemia vera (PV) in mice separately engineered to model each human disease.

In beta-thalassemia, a long-studied genetic disorder, a mutation impairs hemoglobin production, resulting in defective red blood cells (RBCs). Those cells have a reduced ability to carry oxygen, resulting in anemia. However, the body continues to accumulate iron, because of low levels of hepcidin, generating a vicious cycle that destroys more RBCs and also may cause severe damage in the liver and heart.

In PV, rare mutations drive the overproduction of RBCs, gradually thickening the blood into a ketchup-like consistency. This raises the risk of high blood pressure and thrombosis (clotting), which may cause a stroke. PV also causes a painfully enlarged spleen. The standard treatment for PV is phlebotomy–puncturing a vein to remove blood. However, removing blood does not stop the body from keeping RBC production in overdrive.

Rivella and colleagues bred mouse models of both diseases, first at Weill Cornell Medical College in New York, where their study began, and subsequently at CHOP.

The study team found that, in young mice that modelled beta-thalassemia, minihepcidins normalized RBC levels and relieved both anemia and iron overload. In older mice, the compound improved RBC production and did not interfere with a chelating drug used to remove excess iron deposits.

In mice expressing the gene mutation that causes PV, minihepcidins also normalized RBC production. Because increased iron absorption in PV keeps RBC production in overdrive, when minihepcidins curtailed iron absorption, they lowered the abnormally high numbers of RBCs–which also reduced spleen enlargement.

Rivella noted that if minihepcidins prove successful in clinical trials, they may provide an important tool in treating these blood disorders. “In animal affected by beta-thalassemia, the compound blocks iron from getting into organs, but doesn’t remove excess iron already in organs and tissues. If minihepcidins are used in older patients, they would need to be combined with existing chelating drugs that remove the already-accumulated iron.” However, he added that in beta-thalassemia, providing minihepcidins in childhood might halt iron accumulation and prevent more severe adult disease. In PV, minihepcidins may help normalize a patient’s RBC production, but, as in beta-thalassemia, would not treat the underlying disease-causing mutations.

Source: Children’s Hospital of Pennsylvania 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Columbia-CZ team develops 10.3M parameter model that outperforms 100M parameter rivals on cell type classification
Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE