Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Double-Barreled Immune Cell Approach for Neuroblastoma

By Drug Discovery Trends Editor | November 3, 2008

Adding an artificial tumor-specific receptor to immune system cells called T-lymphocytes that target a particular virus extended and improved the cells’ ability to fight a form of childhood cancer called neuroblastoma, said researchers from Baylor College of Medicine and Texas Children’s Hospital in a report that appears online today in the journal Nature Medicine.

‘This is a way to convert a naturally occurring problem into a benefit in treating cancer,’ said Dr. Malcolm Brenner, director of the Center for Cell and Gene Therapy at BCM, TCH and The Methodist Hospital, and professor of pediatrics and medicine at BCM. He and his colleagues reported on using the new treatment in 11 patients with recurring neuroblastoma. ‘For the first time, we started to see tumor responses. We have one complete remission and others who have had stable disease for more than a year.’

The patients responded after only the one infusion of cells because they last a long time in the body and their numbers can increase, said Brenner.

Cytotoxic T cells remain in body
Previous attempted to use T-lymphocytes with an artificial receptor directed to tumor cells proved disappointing because they disappeared from the body too quickly to have an anti-cancer effect. However, cytotoxic T cells that already have a natural receptor for the Epstein-Barr virus are continually activated by the presence of the virus, which is never eliminated from the body.

Brenner and his group added to these T-lymphocytes a particular receptor for a protein called diasialoganglioside GD2, which is found in human neuroblastoma cells.

‘We took the T-lymphocytes’ with specificity for Epstein-Barr and added another receptor,’ said Brenner. ‘In effect they trampoline off the virus and onto the tumor.’

Thus these cytotoxic T-lymphocytes remain in the body because they are constantly stimulated by the virus. Their artificial antigen receptor enables them to latch onto and kill the cancer cells.

Plans to add receptors for other cancers When the researchers put the artificial receptor into both ordinary T-lymphocytes and those that are stimulated by the virus into the 11 patients, they found that the cancer directed cells stimulated by the Epstein-Barr virus lasted as long as 18 months and at higher levels than the other cells.

Neuroblastoma is a tumor of primitive cells that go on to form the sympathetic nervous system. Apart from brain tumors, it is the most common solid cancer of children, and accounts for 7 percent of the total. In two-thirds of cases, it is not diagnosed until it has already spread to other parts of the body.

He and his colleagues hope to improve the treatment to make the T-lymphocytes more potent cancer killers, he said. One way would be to add specific receptors for proteins that allow the T-lymphocytes to avoid the immune-dampening effects of the cancers. Another might be to give the treatment right after the patients receive a stem cell transplant. At that time, the number of tumor cells would be at its lowest and there would be a lot of signals telling the T-lymphocytes to increase in number.

Within the next year, they plan to add receptors for other cancers to the virus-specific T-cells and see if they get the same cancer-fighting effect.

Release Date: November 2, 2008
Source: Baylor College of Medicine


Filed Under: Drug Discovery

 

Related Articles Read More >

Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
Labcorp widens precision oncology toolkit, aims to speed drug-trial enrollment
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE