Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Discovery Offers Key for Combating Muscular Dystrophy

By Drug Discovery Trends Editor | March 30, 2016

A rare sugar unit called ribitol 5-phosphate was found within the sugar molecules on the surface of muscle cells. Three genes linked to muscular dystrophy (ISPD, fukutin, and FKRP) are the enzymes used to create the ribitol 5-phosphate sugar molecule. If any of them contain mutations, this affects the creation of the sugar molecule and leads to muscular dystrophy.  Source: Kobe UniversityA group of Japanese scientists have succeeded in decoding a sugar molecule and clarifying a mechanism linked to muscular dystrophy. Their discovery has potential implications for muscular dystrophy treatment. The results of their research were published in the journal Cell Reports on February 25, 2016 EST.

Key research group members include Professor TODA Tatsushi, Associate Professor KANAGAWA Motoi, and Associate Professor KOBAYASHI Kazuhiro from the Kobe University Graduate School of Medicine; Doctor ENDO Tamao, Vice-director from the Tokyo Metropolitan Institute of Gerontology; and Doctor WADA Yoshinao, Director of the Osaka Medical Center and Research Institute for Maternal and Child Health.

Muscular dystrophy is an incurable genetic condition marked by progressive weakening of the muscles. The condition is caused by mutations in the genes responsible for muscle structure and functions. Previous research had revealed three major genes involved in a certain family of muscular dystrophies: fukutin, fukutin-related proteins (FKRP), and isoprenoid synthase domain-containing (ISPD). When these three genes do not function correctly, abnormalities occur in the sugar molecules that bind to the dystroglycan protein on the surface of muscle cells. However, until now the exact composition of the sugar molecules and the role of these genes was unclear.

Professor Toda’s research group succeeded in creating a sugar molecule in a cell culture. Using mass spectrometric analysis, they calculated the mass of each component in the sugar molecule and identified an unusual sugar unit called “ribitol 5-phosphate”. The group went on to discover that three causative genes of muscular dystrophy (ISPD, fukutin, and FKRP) are all involved in creating this sugar unit. In a patient cell model with each of these three genes removed, ribitol 5-phosphate was also absent, proving that the abnormal synthesis of ribitol 5-phosphate is a cause of the condition. When CDP-ribitol, one of the ingredients for ribitol 5-phosphate, was added to the cell model, the abnormalities in the sugar molecule were resolved.

The sugar unit ribitol 5-phosphate was previously only confirmed in bacteria and some plants, so the researchers were surprised to discover that in mammals it functions as a component of sugar-protein interactions. They suggest that the sugar unit also has a key role in embryonic tissue development. Abnormalities in its combination with proteins could cause cancer metastasis and viral infection as well as muscular dystrophy.

“Sugar molecules play a key role in many biological processes, but their composition is difficult to determine and research on them is still limited”, said Professor Toda. “The decoding of this sugar molecule has implications for the field of life sciences, as well as being a step further in the treatment of muscular dystrophy”.

Source: Kobe University


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE