Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

CRISPR Screen Identifies Gene That Helps Cells Resist West Nile, Zika Viruses

By UT Southwestern Medical Center | September 17, 2018

UT Southwestern researchers today report the first use of CRISPR genome-wide screening to identify a gene that helps cells resist flavivirus infection. That nasty class of pathogens includes West Nile virus, dengue fever, Zika virus, and yellow fever.

In a study published in Nature Microbiology, the team led by Dr. John Schoggins, Assistant Professor of Microbiology, used the cutting-edge CRISPR technology to identify the IFI6 gene as a potent antiviral gene targeting flaviviruses. The researchers then used traditional cell culture studies to confirm the gene’s role in protecting against infection by Zika, West Nile, dengue, and yellow fever viruses.

“Other studies have used CRISPR genetic screens to identify cellular genes that are required for flavivirus infection. Our study is the first to use this technology to identify cellular genes that inhibit infection,” said Dr. Schoggins, a Nancy Cain and Jeffrey A. Marcus Scholar in Medical Research, in Honor of Dr. Bill S. Vowell, and a Clayton Foundation Investigator.

“In mammals, cells naturally defend against viral infection through interferon, a molecule that sets off a warning system that a virus has been detected and that the cells need to engage their viral defense systems. The cells do this by activating hundreds of interferon-stimulated genes,” he said. “Flaviviruses cause substantial human disease, and interferon is involved in the body’s innate immune response to these viruses.”

Dr. Schoggins said the team used recently developed genome-wide CRISPR screening technology to identify which of the interferon-induced genes played a major role in suppressing flavivirus infection. He praised the work of graduate student and lead author Blake Richardson and of co-author Dr. Maikke Ohlson, a senior research scientist in his laboratory. “Blake performed all the phenotypic and mechanistic work on how IFI6inhibits flaviviruses and Dr. Ohlson performed the CRISPR screen that allowed us to uncover IFI6 as a potent suppressor of flavivirus infection,” he said.

“In the CRISPR screen, we used human liver cells and knocked out every gene in the genome – about 19,000 genes – one at a time. We then stimulated the cells with interferon, knowing that this stimulation would normally allow the cells to resist viral infection. For the cells that did not resist infection – because they were missing a gene due to the CRISPR knockout – we used next-generation sequencing to figure out the identity of the relevant genes,” he said.

Dr. Schoggins explained that the CRISPR gene-editing technology made such a study extremely efficient, uncovering the prominent flavivirus-inhibiting role of IFI6.

“The brilliance of the technology is that all of these CRISPR-targeted cells are pooled together in just a few big cell culture dishes. The cells are also bar-coded so you know which gene is missing from each cell when you observe how they respond to the addition of interferon,” he said.

“The technology is super cool,” he added.

In cell culture studies, the IFI6 gene – apparently working via its protein product, also called IFI6 – inhibited yellow fever, a flavivirus known to infect the liver. Cells with a working IFI6 gene also inhibited dengue, Zika, and West Nile viruses, he said. The researchers confirmed those results in liver cells by repeating the experiment in kidney and skin cell lines and in neurons.

Future work will entail drilling down into the molecular mechanism of the IFI6 protein, with the hope that this knowledge may provide a foundation for developing therapies that could target flavivirus infection.

Sporadic West Nile cases have been reported this summer in the United States, he said, adding, “Zika has waned, but I think people still remember it quite well; dengue is an ongoing problem in tropical climates, and there’s currently an outbreak of yellow fever virus in Brazil.”

 

In earlier studies, Dr. Schoggins and other researchers identified other possible flavivirus resistance proteins using non-CRISPR screening techniques, but the CRISPR technology makes IFI6 appear to play a more prominent role, he said.

Questions still to be answered include whether CRISPR screens in other cell types would give different results. This study focused on liver cells because it began as an investigation of yellow fever, which is known to attack the liver. Zika is known to affect cells in the brain but CRISPR genetic screening in neurons presents logistical challenges, he explained.

UTSW co-authors include research assistant Jennifer Eitson, former summer undergraduate research fellow Matthew McDougal, graduate students Ian Boys and Katrina Mar, and Medical Science Training Program (MSTP) dual M.D./Ph.D. student Pamela De La Cruz Rivera, all of Microbiology; computational biologist Ashwani Kumar; Dr. Chao Xing, Associate Professor, Department of Clinical Sciences and Eugene McDermott Center for Human Growth and Development, and Director of the McDermott Center Bioinformatics Core; as well as research technician Connor Douglas and Dr. Genevieve Konopka, Associate Professor, both of Neuroscience.

The research received support the National Institutes of Health, the Rita Allen Foundation, the Clayton Foundation for Research, and the National Science Foundation. The study also got technical support from UT Southwestern’s Live Cell Imaging Core and the Electron Microscopy Core.


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE