Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

CRISPR Helps Produce Bigger, Healthier Tomatoes

By Kenny Walter | October 2, 2018

Next-generation gene editing techniques could help produce nutrient rich crops that are bigger and provide higher yields.

An international team of researchers has developed a new crop from a wild plant within a single generation by using the gene-editing tool CRISPR-Cas9 to introduce a number of crop features to a wild tomato (Solanum pimpinellifolium) without losing its genetic properties.

“This new method allows us to start from scratch and begin a new domestication process all over again,” biologist Jörg Kudla, a professor from the University of Münster in Germany, whose team is involved in the study, said in a statement. “In doing so, we can use all the knowledge on plant genetics and plant domestication which researchers have accumulated over the past decades.

“We can preserve the genetic potential and the particularly valuable properties of wild plants and, at the same time, produce the desired features of modern crops in a very short time.”

The researchers selected this specific species of wild tomato because it is a progenitor of the modern cultivated tomato. It is unusable as a crop plant because the plant’s fruits are only the size of peas and it produces a relatively low yield.

However, the fruit is more aromatic than modern tomatoes and contain twice as much lycopene. The new genetically modified tomatoes contain even more lycopene, double of that of the wild tomato and about five times more than conventional cherry tomatoes.

“This is a decisive innovation which cannot be achieved by any conventional breeding process with currently cultivated tomatoes,” Kudla said. “Lycopene can help to prevent cancer and cardiovascular diseases. So, from a health point of view, the tomato we have created probably has an additional value in comparison with conventional cultivated tomatoes and other vegetables which only contain lycopene in very limited quantities.”  

The team used multiplex CRISPR-Cas9 to force the wild tomato plant to produce offspring plants that bore small genetic modifications in six genes that are seen as key figures in the domesticated tomato.

The modifications yielded a tomato with fruit three times larger and more compact than the wild tomato and ten times the number of fruits. The shape of the modified fruits are also more oval than the wild fruit, which are generally round, that split faster with rain.

Over the years scientists have modified the properties of crops to adapt them to meet the needs of human beings. However, while modifying wild plants to produce higher yields, scientists unintentionally reduced genetic diversity and lost a handful of useful properties.

With the new advancements using gene-editing tools, the researchers hope it will be possible to increase the size of fruits and improve other features of domestication to transform them into entirely new crops.

The study was published in Nature Biotechnology.


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE