Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Could Algae Inspire New Pharmaceuticals?

By Andrew Dahl, CEO of ZIVO | April 16, 2018

DDD spoke with Andrew Dahl, CEO of ZIVO, to learn more about the potential of phamacognosy.

1. What is the historical precedent for using pharmacognosy, the search in nature for potentially useful compounds, as a tool for drug discovery? 

It Is the oldest form of pharmacology. The Ancient Babylonians, Chinese, Indians and Egyptians created remedies from herbs, fruits and minerals. Aspirin was derived from the leaves of a willow tree in Northern Europe.

2. As the development pipeline in the pharmaceutical industry runs progressively thinner, why is it worthwhile for companies to look to the world of nature, and plants in particular, to develop new drug candidates? 

The current drug development paradigm is best described as testing random combinations of molecules with high-throughput screening protocols to find bioactivity of any kind. It is time-consuming and very expensive, with no guarantee of success. Therefore, pharmacognosy is getting a second look because the link between a natural product and a disease model has already been established. But the task of elucidating the bioactive compound(s) from that natural product, which can be quite elusive, is not for the faint of heart or lack of deep pockets.

3. What are some of the characteristics of the biologically active compounds produced by microalgae that make them especially appealing as a potential source for drug discovery? 

Algae produce an abundance of sterols, steroids, phenols, ecosanoids, peptides, proteins, polysaccharides and lipids that are biologically active in mammals. Some marine algae are being cultivated as source material for cancer drugs, while others provide cardiovascular benefits, such as Omega 3 oils, but without the residual mercury that may be present when extracting Omega 3 oils from fish or crustaceans.

4. Why could a partnership between a pharmaceutical company and a R&D company focused on algae be beneficial? 

The bioactive compounds produced by a single algal species can number in the hundreds. Once the species is understood and its metabolism mapped out, a biotech firm is in a position to deliver a stream of useful lead compounds or discovery-stage candidates at relatively low cost and timelines.

5. What kinds of therapeutics could be targeted by algae-based compounds? 

Our research into a single strain has revealed potential therapeutic applications for bovine mastitis, canine osteoarthritis and human cholesterol management. There are hundreds of researchers around the world expanding the universe of applications for both humans and animals.

6. Have any algae-based compounds been developed and/or commercialized to date? If so, which ones? If not, what developments in this area are currently furthest along? 

Alginates and glycoaminoglycans are already in common use in pharmaceutical manufacturing. Compounds such as fucoidans and ulvans are in the process of commercialization. Dr. William Gerwick at the Scripps Institute/Skaggs School of Pharmacology at UC San Diego is a pioneer in identifying potential cancer treatments that originated in marine algae.

7. How can the emerging field of glycoscience benefit from the incorporation of algae into drug development programs? 

Algae produce an amazing array of sugars, from simple oligosaccharides to complex, multi-branched polysaccharides with double and triple carbon bonds, some

of which are naturally sulfated or methylated, effectively supercharging their potency. The role of sugars in complex metabolic processes is only now being discovered. Many protein-to-protein binding reactions have been found to be mediated by a strand of sugar. Like antibodies or hormonal therapies, glycoscience will likely have a significant impact in our understanding of mammalian metabolism and how we address disease, injury or dysfunction.

8. What are the principal challenges involved in adapting algae-based extracts for pharmaceutical compounds?   

Complexity, fragility and sheer volume of potential combinations. Finding a bioactive is complicated by the fact that in attempting to isolate and analyze it, the bioactive itself is transformed and the bioactivity is lost or substantially altered. This is not limited to algae. Many natural products present a significant challenge to identification and characterization of a single effective agent.

9. What core message(s) should be conveyed to pharmaceutical companies that are considering incorporating algae-based compounds into future drug candidates? 

I don’t think that pharma companies look at it that way They are generally skeptical of bioactives derived from natural products because those bioactives can be costly or complicated to manufacture at scale, and/or consist of a heterogeneous mix of actives that is not consistent in its beneficial effects, or is not stable over time.

10. How difficult is it to initially separate the bioactive from the non-bioactive molecules from algae in quantities that are usable for subsequent processing by the pharmaceutical industry? 

Depends entirely on the structure and chemical composition of the bioactive agent. If it’s a small molecular entity like a flavonol, it’s relatively straightforward. If it’s a huge polysaccharide with multiple branches and double bonds, it’s probably impossible.

11. What specific research results to date have seemed to be most promising in suggesting a bright future in studying algae as an avenue for drug discovery? 

University of Ireland – Galway is a center for algal research, as is the Kaoshang Marine University in Taiwan. Everyone in this field tends to their own R&D, so we can’t comment on algae research in general.


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE