Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Complex, Large-scale Genome Analysis Made Easier

By Drug Discovery Trends Editor | June 17, 2015

A new algorithm makes it possible to perform genetic analysis of up to 500,000 individuals — and many traits at the same time.Researchers at EMBL-EBI have developed a new approach to studying the effect of multiple genetic variations on different traits. The new algorithm, published in Nature Methods, makes it possible to perform genetic analysis of up to 500,000 individuals — and many traits at the same time.

The relationship between genes and specific traits is more complicated than simple one-to-one relationships between genes and diseases. Genome-wide association studies (GWAS) show that many genetic factors are at play for any given trait, but scientists are just beginning to explore how, specifically, genetic variations affect health and disease. Two major statistical challenges to finding these connections involve analyzing associations between many different genetic variants and multiple traits, and making the best use of data from large cohorts that include hundreds of thousands of individuals.

“It is very challenging to identify genetic variants that underlie phenotypes, or traits, and usually we do this by analyzing each phenotype and each variant one by one,” explains Oliver Stegle, Research Group Leader at EMBL-EBI. “But the simple models we use to do this are too simplistic to uncover the complex dependencies between sets of genetic variants and disease phenotypes.”

Complex models that let you look at the combined action of many different variants have, until now, involved so much computation that it would take a year to run a single complex query.

“The breakthrough here is that we’ve made it possible to perform an integrative analysis involving many variants and phenotypes at the same speed as current approaches,” says Oliver.

The researchers tested their algorithm on data from two studies from public repositories, and compared the results with existing state-of-the-art tools. Their study of four lipid-related traits (LDL and HDL cholesterol levels, C-reactive protein, triglycerides) proved that the new method is substantially faster, and can explain a larger proportion of these traits in terms of the genetics that drive them.

“We wanted to be able to look at these questions from both directions,” says Oliver. “On the one hand, we want to look at all the variants in a single gene that may be involved in the regulation of one particular lipid trait. On the other, we want to look at the combined effect across larger sets of lipid levels, for example to find out something about lipid regulation in general.”

Using the new method, GWAS researchers can explore several variants of a gene at once while comparing them with several related phenotypes. This makes it much easier to pinpoint which genes or — or locations on genes — are involved in a particular function, such as lipid regulation.

“What’s important about this work is that it improves statistical power and provides the tools people need to analyze multiple traits in very large cohorts,” says Oliver. “Our algorithm can be used to study up to half a million individuals — that hasn’t been possible until now.”

“Currently, people are either using multiple variant methods on one phentoype, or multiple phenotype methods but looking at just one variant at a time. Oliver’s new scheme is a real advance because it lets you do both at the same time, and is scalable to be used on the very large cohorts we are starting to see in initiatives like the UK BioBank,” says Ewan Birney, Associate Director at EMBL-EBI.

The new algorithm provides much-needed methods for genomics, making large-scale, complex analysis a manageable and practical endeavor.

“Our method, which we call mSet, provides a principled approach to testing for statistical relationships between multiple genetic variants and groups of traits. These methods will help researchers determine which specific aspects of our biology are inherited, and uncover new insights into the genetics behind our countless biological processes.”


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Columbia-CZ team develops 10.3M parameter model that outperforms 100M parameter rivals on cell type classification
Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE