Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

Cold Medicine Could Stop Cancer Spread

By Hokkaido University | October 18, 2016

Tumor growth in the xenograft bladder cancer model was monitored using a bioluminescence imaging system. Forty-five days after inoculation, metastatic tumors were detected in the lungs, liver and bone. (Credit: Matsumoto R. et. al., Scientific Reports, Oct. 4, 2016)

Bladder cancer is the seventh most common cancer in males worldwide. Every year, about 20,000 people in Japan are diagnosed with bladder cancer, of whom around 8,000 — mostly men — succumb to the disease. Bladder cancers can be grouped into two types: non-muscle-invasive cancers, which have a five-year survival rate of 90 percent, and muscle-invasive cancers, which have poor prognoses. The latter are normally treated with such anticancer drugs as cisplatin, but tend to become chemoresistant and, thus, spread to organs such as the lungs and liver, as well as bone.

In the latest research, human bladder cancer cells labeled with luciferase were inoculated into mice, creating a xenograft bladder cancer model. The primary bladder xenograft gradually grew and, after 45 days, metastatic tumors were detected in the lungs, liver and bone. By using a microarray analysis including more than 20,000 genes for the metastatic tumors, the team discovered a three- to 25-fold increase of the metabolic enzyme aldo-keto reductase 1C1 (AKR1C1). They also found high levels of AKR1C1 in metastatic tumors removed from 25 cancer patients, proving that the phenomena discovered in the mice also occur in the human body. Along with anticancer drugs, an inflammatory substance produced around the tumor, such as interleukin-1β, increased the enzyme levels.

The researchers also identified for the first time that AKR1C1 enhances tumor-promoting activities and proved that the enzyme blocks the effectiveness of cisplatin and other anticancer drugs.

The researchers finally discovered that inoculating flufenamic acid, an inhibitory factor for AKR1C1, into cancerous bladder cells suppressed the cells’ invasive activities and restored the effectiveness of anticancer drugs. Flufenamic acid is also known as a nonsteroid anti-inflammatory drug used for treating common colds.

The team’s discovery is expected to spur clinical tests aimed at improving prognoses for bladder cancer patients. In the latest cancer treatments, expensive molecular-targeted drugs are used, putting a large strain on both the medical economy and the state coffers. “This latest research could pave the way for medical institutions to use flufenamic acid — a much cheaper cold drug — which has unexpectedly been proven to be effective at fighting cancers,” says Dr. Shinya Tanaka of the research group.

The research was conducted in collaboration with Dr. Nobuo Shinohara of the Department of Renal and Genitourinary Surgery at Hokkaido University; the article’s lead author was postgraduate student Ryuji Matsumoto.


Filed Under: Drug Discovery

 

Related Articles Read More >

Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study
Novartis in the Pharma 50
Novartis to cut up to 8,000 positions
Gilead Sciences in the Drug Discovery & Development Pharma 50
Gilead resubmits application to FDA for twice-yearly HIV drug lenacapavir
George Floyd mural
How the pandemic and George Floyd made clinical trial diversity a priority

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50