Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Chemoprevention Gene Therapy Kills Pancreatic Cancer Cells

By Drug Discovery Trends Editor | August 5, 2008

Researchers at the Virginia Commonwealth University Massey Cancer Center and the VCU Institute of Molecular Medicine have published findings that implicate a new chemoprevention gene therapy (CGT) for preventing and treating pancreatic cancer, one of the most lethal and treatment-resistant forms of cancer.

In the July issue of Molecular Cancer Therapeutics, the researchers showed that combining a dietary agent with a gene-delivered cytokine effectively eliminates human pancreatic cancer cells in mice displaying sensitivity to these highly aggressive and lethal cancer cells.

Cytokines are a category of proteins that are secreted into the circulation and can affect cancer cells at distant sites in the body, including metatases. The cytokine used in this study was melanoma differentiation associated gene-7/interleukin-24, known as mda-7/IL-24. 

The dietary agent, perillyl alcohol (POH), was combined with mda-7/IL-24, which is already used in other cancer treatments. POH is found in a variety of plants, including citrus plants, and has been well-tolerated by patients who have received it in clinical studies.

The results indicated that the CGT approach not only prevented pancreatic cancer growth and progression, but it also effectively killed established tumors, thereby displaying profound chemopreventive and therapeutic activity.

Release date: August 5, 2008
Source: Virginia Commonweath University 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Columbia-CZ team develops 10.3M parameter model that outperforms 100M parameter rivals on cell type classification
Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE