Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Chemists show proof-of-concept for new drug discovery method

By Drug Discovery Trends Editor | January 12, 2015

Chemists have made a significant advancement to directly functionalize C-H bonds in natural products by selectively installing new carbon-carbon bonds into highly complex alkaloids and nitrogen-containing drug molecules. C-H functionalization is a much more streamlined process than traditional organic chemistry, holding the potential to greatly reduce the time and number of steps needed to create derivatives of natural products.

Nature Communications published the findings, emerging from a collaboration with Novartis Institutes for BioMedical Research and Emory Univ.

“This paper is essentially a proof of concept,” says co-author Huw Davies, an organic chemist at Emory and director of the CCHF. “We’ve shown that C-H functionalization has reached the stage where it can readily be applied to derivatization of nitrogen-containing compounds, ubiquitous in the discovery and development of new medicines.”

Co-authors are Novartis chemists Rohan Beckwith, Jing He and Lawrence Hamann.

The CCHF is at the forefront of a major paradigm shift in organic chemistry. The center brings together scientists from leading research universities across the U.S., Asia and Europe—as well as from private industry—with the aim of making organic synthesis faster, simpler and greener.

Traditionally, organic chemistry has focused on the division between reactive, or functional, molecular bonds and the inert, or non-functional bonds carbon-carbon (C-C) and carbon-hydrogen (C-H). The inert bonds provide a strong, stable scaffold for performing chemical synthesis on the reactive groups.

C-H functionalization flips this model on its head: It bypasses the reactive groups and does synthesis at the inert C-H sites.

“We had already demonstrated that we have a tool box of reagents and catalysts that allow us to control which sites in a molecule will undergo C-H functionalization,” Davies says. “Novartis wanted to explore whether this chemistry was robust enough to be carried out on really complex compounds like alkaloids.”

Alkaloids are a family of natural products produced by plants that have biological properties important to medicine. Morphine, codeine and opioids are examples of alkaloids.

A key part of the drug development process is creating libraries of derivatives from such natural products: Groups of chemical compounds with small molecular differences. “These small differences could determine whether a compound is toxic or carries other liabilities, or has the right mix of properties to become a safe and effective therapeutic agent,” Davies says.

The results outlined in the paper demonstrate the efficiency of rhodium catalysts to selectively install a new carbon-carbon bond into complex alkaloids in a highly controlled manner.

The research also demonstrates the ability of the CHHF to pioneer new ways of chemists working together: Breaking through the traditional boundaries of individual labs, academic institutions, countries and corporations to create a global collaboration of chemists taking different approaches to similar problems.

“Novartis sees great potential in C-H functionalization,” Davies says. “It has been an early and enthusiastic supporter of the CCFH through collaborative research of scientists at Novartis and in CCHF academic labs.”

Source: Emory Univ.


Filed Under: Drug Discovery

 

Related Articles Read More >

Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
Labcorp widens precision oncology toolkit, aims to speed drug-trial enrollment
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE