Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Breast Cancer Stem Cells in Mouse Tissue Identified and Repressed

By Drug Discovery Trends Editor | December 18, 2007

By manipulating highly specific gene-regulating molecules called microRNAs, scientists at Cold Spring Harbor Laboratory (CSHL) report that they have succeeded in singling out and repressing stem-like cells in mouse breast tissue—cells that are widely thought to give rise to cancer. 

“If certain forms of breast cancer do indeed have their origin in wayward stem cells, as we believe to be the case, then it is critical to find ways to selectively attack that tumor-initiating population,” said Gregory Hannon, Ph.D., CSHL professor and Howard Hughes Medical Institute Investigator. Hannon also is head of a lab focusing on small-RNA research at CSHL and corresponding author of a paper reporting the new research, published in the latest issue of Genes and Development.

“We have shown that a microRNA called let-7, whose expression has previously been associated with tumor suppression, can be delivered to a sample of breast-tissue cells, where it can help us to distinguish stem-like tumor-initiating cells from other, more fully developed cells in the sample.  Even more exciting, we found that by expressing let-7 in the sample, we were able to attack and essentially eliminate, very specifically, just that subpopulation of potentially dangerous progenitor cells.”
The study was done in collaboration with Senthil Muthuswamy Ph.D., an expert in breast cancer research who heads a CSHL lab focusing on understanding the changes in the biology of breast epithelial cells during the initiation and progression of cancer. Dr. Muthuswamy emphasized that a key ingredient that made this study successful is the use of a mouse breast-derived model cell system called COMMA-1D that not only includes differentiated cells but also stem-like progenitors, in varying stages of maturity, or differentiation.

Release date: December 17, 2007
Source: Cold Spring Harbor Laboratory 


Filed Under: Drug Discovery

 

Related Articles Read More >

EVEREST lead investigator on why Dupixent sets a new bar for treating coexisting CRSwNP and asthma
Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE