Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Breakthrough understanding of biomolecules could lead to new, better drugs

By Drug Discovery Trends Editor | August 25, 2014

Michigan Tech biochemist Tarun Dam with a solution containing lectin, used to study how an important class of biomolecules react in the body. Photo: Sarah BirdThere’s a certain type of biomolecule built like a nano-Christmas tree. Called a glycoconjugate, it’s many branches are bedecked with sugary ornaments.

It’s those ornaments that get all the glory. That’s because, according to conventional wisdom, the glycoconjugate’s lowly “tree” basically holds the sugars in place as they do the important work of reacting with other molecules.

Now a biochemist at Michigan Technological Univ. has discovered that the tree itself—called the scaffold—is a good deal more than a simple prop.

“We had always thought that all the biological function resides in the sugar,” said Tarun Dam, principal investigator of the Mechanistic Glycobiology Lab at Michigan Tech. “People didn’t appreciate that the scaffolds were active.”

The discovery opens up new avenues for research, in particular the development of more and better pharmaceuticals. Glycoconjugates are found naturally in the body, but they are also an important class of drugs that includes anything from cancer treatments to vaccines.

To determine if the scaffold had a role to play in biological reactions, Dam and his team built and tested two types of glycoconjugate molecules. They had the same sugars and virtually identical shapes but were comprised of different scaffolds, one made of protein, the other a synthetic. The scientists then tested how the different glycoconjugates reacted with biomolecules called lectins. Lectins play an important role in numerous biological processes and are a target for many glycoconjugate drugs.

If the scaffolds had been inert, the reactions would have been identical. However, the sugars on the protein scaffold reacted with the lectins differently.

“If the scaffolds are different, they can cause my drug to work one way and your drug to work another way, even though they have similar epitopes [sugars],” Dam said. “Tweaking the scaffold can change the drug’s function.”

An article on their study appears in Biochemistry.

Source: Michigan Technological Univ.


Filed Under: Drug Discovery

 

Related Articles Read More >

Sai Life Sciences exec: GLP-1 boom has ‘exploded the peptide field’ as firm opens new center
Novartis in the Pharma 50
Swissmedic approves first malaria treatment for infants
Korean team reports all-in-one cancer nanomedicine in pre-clinical studies
Nektar’s Phase 2b atopic dermatitis win triggers 1,746% analyst target surge, but legal tussle with ex-partner Lilly could complicate path forward
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE