Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Breakthrough Synthesis Strategy Could Mean Wave of New Medicinal Compounds

By Zachary Boehm, Florida State University | July 5, 2018

FSU scientists have devised a strategy for synthesizing carbocyclic 5-8-5 fused ring systems, a molecular structure with potentially broad therapeutic potential. Credit: Benjamin Moten

In pharmacology, not all molecular structures are created equal. Some frameworks are overrepresented in nature, making them especially attractive to scientists on the hunt for more effective drugs.

One such structure, known to scientists as the carbocyclic 5-8-5 fused ring system, is notoriously difficult to produce using conventional laboratory methods, and researchers have therefore been largely unable to tap into its potentially broad therapeutic potential.

Now, an innovative synthetic technique developed by Florida State University chemists could unlock these elusive structures, opening the door to a new world of cutting-edge medicinal compounds.

In a study published in the journal Chemical Science, FSU researchers detail a novel, modular scheme for producing large quantities of the 5-8-5 ring structure. A synthesis process that was once exceptionally labor- and resource-intensive, they discovered, could be streamlined into four relatively straightforward steps.

“The ubiquity of the 5-8-5 ring system within natural products caught our attention,” said lead author James Frederich, an assistant professor in the Department of Chemistry and Biochemistry. “Our chemistry provides an attractive entry point to natural products harboring a 5-8-5 ring system.”

Considered by chemists to be a possible example of a “privileged scaffold” — an atomic arrangement that recurs frequently in biologically active compounds — the 5-8-5 framework is composed of two five-sided molecular rings fused to a central 8-sided ring. This unique architecture constitutes the core of more than 30 natural products, several of which have useful, potentially therapeutic effects in human cell cultures.

Existing methods for producing this framework in a lab were limited by impractically protracted synthesis processes requiring high temperatures and transition metal catalysts. Frederich’s approach sidesteps these hurdles. In his system, cyclization substrates — the underlying structures upon which the ring frameworks are built — can be accessed via a simple two-step assembly scheme. With a reliable substrate in place, the full 5-8-5 scaffold is accomplished in one, highly controlled operation with UV light employed to promote ring formation.

“The use of UV light is particularly convenient as it avoids the need for high temperatures or costly catalysts,” Frederich said.

Frederich’s strategy is a significant improvement on current approaches to 5-8-5 ring structure synthesis. He said the simplified, high-yielding methodology will aid scientists as they work to better understand the possible medicinal properties of synthetic products built upon the 5-8-5 scaffold.

In particular, Frederich said these compounds could help stabilize protein-protein interactions — the physical mingling of protein molecules that govern biological processes within a cell.

“We speculate that the 5-8-5 ring system can support a range of designed, non-natural structures with interesting properties in human cell culture,” he said. “We expect to leverage this chemistry to build and test certain structures that have been shown to modulate protein-protein interactions.”

This research was funded by the National Institutes of Health.

SOURCE: Florida State University


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE