Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Boosting the Malaria Battle-Line

By Drug Discovery Trends Editor | April 23, 2015

Electron microscope image generated by Dr Mauro Maiorca, University of Melbourne, Australia.In a huge boost to the global fight against malaria, researchers have discovered how the malaria parasite protects itself by building resistance against the last-line in antimalarial medications, and how a new medical treatment can overcome the parasite’s defenses.

Published today the new study reveals that the effectiveness of anti-malarial drugs known as artemisinins or ARTs, can be increased by combining them with a very low dose of an anti-cancer drug. The work was conducted by researchers at the University of Melbourne with collaborators from Australian National University, Thailand, Singapore and the USA and has been published in the journal PLOS Biology. The malaria parasite’s resistance to ART drugs is jeopardizing global malaria control. ART resistance is currently spreading from its site of origin in Cambodia and has reached six South-East Asian countries. 

If it spreads to Africa, where most of the malaria cases occur, this will be a major problem. It is hoped this work will translate into much needed new strategies to combat resistant malaria parasites. “By disabling the malaria parasite’s increased defense system, the antimalarial medications can work more effectively on patients,” said Professor Leann Tilley, lead author from the University of Melbourne and The Bio21 Institute. The clue to targeting the defense system of the parasite was inspired by anti-cancer drugs used in the clinical treatment of the blood disorder myeloma. 

These drugs are known to work by disabling the cell’s ability to repair damaged proteins. “We wanted to find out if combining ARTs with anti-cancer drugs would overcome resistance. So we first developed a mathematical model to understand how resistant parasites respond to ARTs in patients.” “Encouraged by promising predictions from the mathematical model, we completed a detailed laboratory study using parasites from Cambodia where drug-resistance is emerging,” Professor Tilley said. “We found that while resistant parasites are much better at surviving ART treatment than sensitive parasites, extending the ART treatment or adding a very low concentration of an anticancer drug is enough to completely reverse the resistance mechanism.” “Malaria continues to kill more than half a million children every year and its treatment relies heavily on a single drug class. We need to ensure that these drugs keep working by outsmarting the resistance mechanism,” Professor Tilley said. “ART resistance is currently spreading from its site of origin in Cambodia and has reached six South-East Asian countries. If it spreads to Africa, where most of the malaria cases occur, this is a major problem. It is hoped that the work will translate to much needed new strategies to combat resistant malaria parasites.”

Source: University of Melbourne


Filed Under: Drug Discovery

 

Related Articles Read More >

Swissmedic approves first malaria treatment for infants
Korean team reports all-in-one cancer nanomedicine in pre-clinical studies
Nektar’s Phase 2b atopic dermatitis win triggers 1,746% analyst target surge, but legal tussle with ex-partner Lilly could complicate path forward
Dupixent approved to treat bullous pemphigoid
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE