Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Body’s Response to Spicy Foods Guides Design of New Pain Relief Drugs

By Drug Discovery Trends Editor | June 11, 2015

People sense ambient temperature changes with "heat sensors" located at the sensory nerve terminals under the skin. TPRV1, also known as the capsaicin receptor, is the body's primary sensor for pain and temperatures above 104 degrees F (40 degrees C). (Image: Courtesy of J. Zheng lab)UC Davis researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain. Their study appeared online June 8 in the journal Nature Chemical Biology.

Capsaicin is the ingredient that makes chili peppers spicy and hot. The same pathway in the body that responds to spicy food is also activated after injury or when the immune system mounts an inflammatory response to bacteria, viruses, or in the case of autoimmune disease, the body’s own tissues.

“While we have known that capsaicin binds to the TRPV1 receptor with exquisite potency and selectivity, we were missing important atomic-level details about exactly how the capsaicin molecule interacts with TRPV1, one of the body’s primary receptors for sensing pain and heat,” said Jie Zheng, professor of physiology and membrane biology at UC Davis and senior author on the paper.

Using computer models based on atomic force fields and existing low resolution 3-D reconstructions of the TRPV1-capsaicin complex, the researchers identified several structural areas that enable capsaicin to strongly bind to the TRPV1 receptor.  

“Computational biology methods are becoming very powerful tools for predicting and ultimately validating the high-resolution structure of important biological proteins and ligands, such as capsaicin and TRPV1, when they interact,” said Vladimir Yarov-Yarovoy, assistant professor of physiology and membrane biology at UC Davis and co-author on the study. “These tools are especially useful when the interactions are small and transient, and cannot be captured easily with high-enough resolution using traditional experimental approaches.”

Fan Yang, postdoctoral fellow in the Zheng lab at UC Davis and first author on the paper, agrees.

“The electron density observed in the cryo electron microscopy structure of the TRPV1-capsaicin complex is much smaller in size compared to the chemical structure of capsaicin,” Yang said. “With computational docking, we were able to detail the atomic interactions between capsaicin and the TRPV1 channel and later validate the molecular architecture using other experimental approaches.”

The new structural information may serve to guide the drug-design process, the researchers said.

“Just as we can ‘get used to’ a spicy dish by the end of the meal, we believe that there are ways to develop highly specific molecules that make TRPV1 less sensitive to painful stimuli,” Zheng said.

The research also explains why capsaicin does not activate the body’s other channels for sensing temperature, and why the TRPV1 receptor in many other species is not activated by capsaicin.  For example, birds are missing two key interaction sites, which explains why birds are insensitive to the spiciness of chili peppers.

“It is thought that the presence of capsaicin is an evolutional advantage for plants, protecting them from species that would eat the leaves while allowing birds to ingest the peppers to spread the seed,” Zheng said.

The researchers also found that sweet peppers contain a compound called capsiate, which is almost identical to capsaicin in spicy peppers but differs at one key interaction site.  

“The difference is sufficient to make the sweet pepper compound bind to TRPV1 very poorly, which is probably part of the reason why it does not taste spicy,” Zheng said. “On the Scoville pungency scale, capsaicin is 16 million, and capsiate is only 16,000.”

Source: University of California – Davis Health System


Filed Under: Drug Discovery

 

Related Articles Read More >

Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE