Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Blocking Ghrelin’s Release May Mediate Low Blood Sugar Effect

By UT Southwestern Medical Center | August 23, 2016

Dr. Jeffrey Zigman, left, and Dr. Bharath Mani led a UT Southwestern study that found a signaling molecule regulates release of the hunger hormone ghrelin. Credit: UT Southwestern Medical Center

Researchers at UT Southwestern Medical Center have identified a previously unknown role of a cellular signaling molecule involved in release of the “hunger hormone” ghrelin, a finding that could have implications for optimal treatment of children taking beta blockers.

The molecule, beta 1 adrenergic receptor, is a member of a class of cell surface receptor proteins whose primary functions are to convert extracellular stimuli into intracellular signals. In the study, published online today in The Journal of Clinical Investigation, researchers found that this receptor mediates release of ghrelin by cells in the stomach.

Ghrelin, known as the hunger hormone since the protein stimulates appetite and is produced before meals, also prevents dangerously low blood sugar levels, or hypoglycemia. The hormone acts as a natural antidepressant as well.

“When beta 1 adrenergic receptors are removed from the ghrelin-producing cells of laboratory mice, the animals exhibit a marked reduction in circulating ghrelin levels,” said study senior author Dr. Jeffrey Zigman, Associate Professor of Internal Medicine and Psychiatry at UT Southwestern. “The effects of this reduction become apparent when the mice are placed on a calorie-restricted diet and include severe hypoglycemia and, as a result, reduced survival.”

The involvement of beta 1 adrenergic receptors in this process may be particularly relevant to children prescribed beta blocker drugs to treat conditions such as irregular heart rhythms or infantile hemangioma, an abnormal collection of blood vessels that may cause “strawberry” marks on the skin.

Beta blockers work by binding to and inhibiting beta 1 adrenergic receptors. While these drugs usually are not associated with adult hypoglycemia, they have been linked to marked drops in blood sugar levels of young children taking them, especially during periods of acute illness or decreased food intake. These reports of hypoglycemia in children taking beta blockers led to development of best practice standards, with the goal of increasing awareness of and avoiding this life-threatening condition.

Motivated by these cases of hypoglycemia in children and by the findings of hypoglycemia in calorie-restricted mice lacking beta 1 adrenergic receptors in ghrelin-producing cells, Dr. Zigman’s team sought to answer the question: Is there a connection between hypoglycemia and the reduced ghrelin release caused by beta blocker treatment?

In its research, the team reproduced hypoglycemia in young laboratory mice treated with beta blockers and then fasted overnight, a result similar to that found in children prescribed these drugs. Furthermore, the team demonstrated low levels of ghrelin in the mice.

“Based on our data, we would predict that suppression of ghrelin release by beta blockers acting on ghrelin-producing cells likely is responsible for the hypoglycemia that children treated with beta blockers sometimes experience,” said Dr. Zigman, who holds the Diana and Richard C. Strauss Professorship in Biomedical Research and the Mr. and Mrs. Bruce G. Brookshire Professorship in Medicine. “For as yet unknown reasons, most adults taking beta blockers don’t exhibit problems with low blood sugar, and neither did our adult laboratory mice.”

Besides young children, Dr. Zigman said other groups that could be susceptible to hypoglycemia as a result of beta blocker-induced or other causes of reduced ghrelin production include those with muscle and fat wasting – cachexia – and people with anorexia nervosa.


Filed Under: Drug Discovery

 

Related Articles Read More >

Swissmedic approves first malaria treatment for infants
Korean team reports all-in-one cancer nanomedicine in pre-clinical studies
Nektar’s Phase 2b atopic dermatitis win triggers 1,746% analyst target surge, but legal tussle with ex-partner Lilly could complicate path forward
Dupixent approved to treat bullous pemphigoid
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE