Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Blocked Protein Prevents Lupus in Mouse Model

By Drug Discovery Trends Editor | January 22, 2009

Mice from a strain that ordinarily develops systemic lupus erythematosus (SLE), but bred with a deficiency in receptor for the protein Interleukin 21, stayed healthy and exhibited none of the symptoms of the disease, researchers at The Jackson Laboratory and National Institutes of Health report.

SLE is an autoimmune disease, with symptoms of varying severity including include painful or swollen joints, unexplained fever, and extreme fatigue.

The primary job of the immune system is to identify and vanquish potentially dangerous infectious pathogens. Autoimmune diseases develop when immune system instead unleashes this potent defense system against the individual’s own tissues, with predictably severe consequences.

Unlike other autoimmune diseases such as Type 1 diabetes, in which the immune response is focused on certain tissues, SLE is a systemic disease in which abnormal antibodies are produced that injure a variety of tissues and organs, including the skin, heart, lungs, and kidneys.

The cause of SLE is not well understood, but recent work by a Jackson Laboratory research team led by Professor Derry Roopenian is shedding light on how the disease develops and offers hope for better therapies.

Interleukin 21 (IL21) is produced as part of the response by immune cells known as T cells. The IL21 produced then affects a variety of cells in the normal immune system response. However, IL21 produced in overabundance by individuals susceptible to SLE can cause the defense mechanism to misfire and produce antibodies that attack the individual’s own tissues.

Dr. Roopenian and colleagues at the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases worked with a mouse model for SLE and demonstrated that IL21 signaling is essential for the SLE-like autoimmune disease to progress. Mice deficient in the cellular receptor for IL21 that were otherwise genetically identical remained healthy and exhibited none of the disease symptoms.

‘The findings provide strong clue towards understanding how SLE occurs and a clear indication of the importance of Interleukin 21 signaling in Lupus-like diseases,’ Dr. Roopenian said. ‘They suggest that interrupting Interleukin 21 signaling events may prove to be an effective therapeutic option for human SLE.’

Release Date: January 19, 2009
Source: Jackson Laboratory


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Columbia-CZ team develops 10.3M parameter model that outperforms 100M parameter rivals on cell type classification
Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE