A study, led by University of Iowa researchers, reveals a new dimension for a key heart enzyme and sheds light on an important biological pathway involved in cell death in heart disease. The study, published in Cell, has implications for understanding, and potentially for diagnosing and treating, heart failure and arrhythmias.
The UI researchers and colleagues from Vanderbilt University in Nashville, Tenn., focused on calmodulin kinase II, or CaM kinase II, a well-studied enzyme critical to many fundamental processes including heartbeat and thought.
Scientists know that CaM kinase’s activity is sustained by adding a phosphate group — a process known as phosphorylation. The new study proves that oxidation—adding oxygen —also can sustain the enzyme’s activity, and like phosphorylation, the mechanism can be reversed to inactivate the kinase.
“Our results suggest that oxidation of CaM kinase is a dynamic and reversible process that may direct cell signaling in health and disease,” said Mark Anderson, M.D., Ph.D., UI professor of internal medicine and molecular physiology and biophysics and senior study author. “Because CaM kinase activity is involved in arrhythmias, hypertrophy and heart cell death, this work also provides new insights into a disease pathway in heart that may lead to development of new drugs to treat heart disease.”
Release date: May 1, 2008
Source: University of Iowa
Filed Under: Drug Discovery