Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Analyzing Metagenome Helps Understand the Role of Bacterial Species in Crohn’s Disease

By ITMO University | January 30, 2019

Research on gut metagenome of patients with Crohn’s disease elucidates how it influences the taxonomic and functional composition of intestinal microbiota. Among the most common changes are the decrease in the diversity of beneficial microbes and the increased abundance of Escherichia coli and other microbes associated with inflammation. The results can help to better understand the causes and progress of the disease, as well as to optimize treatment schemes. The results were published in BMC Genomics.

Crohn’s disease is a severe inflammatory bowel disease that is widely spread in developed countries. Among its possible causal factors are genetic predisposition, environment and patients’ lifestyle. The disease is associated with an abnormal reaction of the immune system to a person’s own gut microbes; gut dysbiosis is typical. In order to study its progress and find the methods of efficient diagnostics and treatment, scientists explore the role of bacteria in the pathologic process.

Among the most promising approaches is metagenomic analysis – sequencing of total genetic material of a microbial community. A research team including scientists from ITMO University and specialists from the Federal Research and Clinical Center of Physical-Chemical Medicine in collaboration with clinicians from several medical centers have recently investigated the gut metagenome of patients with Crohn’s disease. It was discovered that the composition of microbiota in such patients is significantly different compared to that of healthy subjects: as the fraction of normal microbes decreases, pathogenic species that are not prevalent in humans begin to dominate.

Although the type of dysbiosis varied from patient to patient, most of them manifested a several times increase in the abundance of Escherichia coli. The scientists set out to identify the specific genes that distinguish the subtypes of Escherichia coli inhabiting the gut of patients with Crohn’s disease and common Escherichia coli that exists in healthy people. The comparison conducted on Russian population showed lack of such universal differences. The observations were confirmed during the analysis of the publicly available datasets on healthy subjects and patients with Crohn’s disease from all over the world.

“Escherichia coli is considered among the most well-studied gut microbes and was also one of the first to be discovered. Its increased abundance in the gut is observed in a number of diseases. Our metagenomic analysis showed that the genetic content of Crohn’s disease-associated Escherichia coli varies widely, despite the existing belief that that there are only some specific varieties. The results support the concept that Crohn’s disease is a syndrome, i.e., a disease in which similar manifestations in multiple cases are caused by different factors in each case,” comments Alexander Tyakht, a research associate at ITMO University.

The research indicated that several strains of Escherichia coli can coexist in a human gut. As strains with different genomes can play significantly different ecological roles, the same treatment schemes can have a different effect on different strains. This discovery offers an opportunity to improve the balance of gut microbiota in patients with Crohn’s disease, while personalized analysis of the bacterial genotype offers an opportunity to select the most efficient medications, probiotics and even fecal mass transplantation (FMT) donors for every patient.

These findings also resonate with the scientists’ earlier research that involved genome analysis of isolated E. coli strains. The new results shed light on how microbiota changes in patients with Crohn’s disease and which species and strains of bacteria participate in its development. This, in turn, can help to better understand the onset and progress of the disease, as well as to optimize the treatment methods.


Filed Under: Drug Discovery and Development

 

Related Articles Read More >

Collage of close-up male and female eyes isolated on colored neon backgorund. Multicolored stripes. Concept of equality, unification of all nations, ages and interests. Diversity and human rights
How a ‘rising tide’ of inclusivity is transforming clinical trials
Mary Marcus appointed CEO of NewAge Industries
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
Data analytics tools help doctors analyze trends in patient outcomes and population health.
External comparator studies: What researchers need to know to minimize bias
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE