Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

A Change in Bacteria’s Genetic Code Holds Promise of Longer-Lasting Drugs

By University of Texas at Austin | June 6, 2018

By altering the genetic code in bacteria, researchers at The University of Texas at Austin have demonstrated a method to make therapeutic proteins more stable, an advance that would improve the drugs’ effectiveness and convenience, leading to smaller and less frequent doses of medicine, lower health care costs and fewer side effects for patients with cancer and other diseases.

The results were published today in the journal Nature Biotechnology.

Many drugs commonly used to treat cancer and diseases of the immune system — including insulin, human growth hormone, interferon and monoclonal antibodies — can have a short active life span in the human body. That’s because these drugs, which are proteins or chains of amino acids linked together by chemical bonds, contain the amino acid cysteine, which makes chemical bonds that break down in the presence of certain compounds found in human cells and blood.

The new method replaces cysteine with another amino acid called selenocysteine, which forms hardier chemical bonds. The change would lead to drugs that have the same therapeutic benefit but increased stability and may survive longer in the body, according to the new study.

“We have been able to expand the genetic code to make new, biomedically relevant proteins,” said Andrew Ellington, associate director of the Center for Systems and Synthetic Biology and a professor of molecular biosciences who co-authored the study.

Biochemists have long used genetically modified bacteria as factories to produce therapeutic proteins. However, bacteria have built-in limitations that previously prevented harnessing selenocysteine in these therapies. Through a combination of genetic engineering and directed evolution — whereby bacteria that produce a novel protein containing selenocysteine can grow better than those that don’t — the researchers were able to reprogram a bacteria’s basic biology.

“We have adapted the bacteria’s natural process for inserting selenocysteine to remove all the limitations, allowing us to recode any position in any protein as a selenocysteine,” said Ross Thyer, a postdoctoral researcher in Ellington’s lab who led the study.

Other authors on the paper, all from UT Austin, are Raghav Shroff, Dustin Klein, Simon d’Oelsnitz, Victoria Cotham, Michelle Byrom and Jennifer Brodbelt.

Thyer, Brodbelt and Ellington described the basic method in a paper in the Journal of the American Chemical Society in 2015. In this latest study, the team demonstrated the practical application of this method by producing medically relevant proteins — including the functional region of the breast cancer drug Herceptin. The team showed that the new proteins survive longer in conditions similar to those found in the human body compared with existing proteins containing cysteine.

Funding for this research was provided by the Welch Foundation, the National Science Foundation, the U.S. Army Research Office and the National Cancer Institute.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest. University investigators involved in this research have submitted required financial disclosure forms with the university. UT Austin filed patent applications on the technology described in this news release, and the patents were licensed earlier this year to form a startup to develop improved protein therapeutics. Ellington and Thyer have equity ownership in the biotech startup.


Filed Under: Drug Discovery

 

Related Articles Read More >

Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE