Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

3D Axon Assemblies Pave Way for Drug Discovery

By University of Tokyo | October 27, 2017

Motor nerve-like tissue (right) was generated using human induced pluripotent stem cell-derived motor neurons (left). Source: 2017 Jun Kamei and Yoshiho Ikeuchi, Institute of Industrial Science, The University of Tokyo

Axons are the structures through which neurons transmit information to other cells. In the body, they aggregate to form fascicles. Several technologies allow scientists to generate and study single axons in the lab, but none are effective at creating nerve fascicles. A collaboration between researchers in Japan and the United States has led to a new microdevice that successfully forms fascicles in the lab. The report, which can be read in Stem Cell Reports, is expected to provide important insights on brain development and disease.

“We know that growing axons form fascicles, but we do not know how fascicles form,” says Yoshiho Ikeuchi, a lecturer at the Institute of Industrial Science at the University of Tokyo and senior author of the study.

Many scientists have examined axon development and degeneration in two-dimensional (2D) systems. However, it is becoming increasingly apparent that the fascicle’s 3D structure has an essential role in axon function. Because fascicles are disrupted in many neurodegenerative diseases such as ALS, the research group theorized that understanding their formation could give clues on the prevention of a number of diseases.

To form axon fascicles, the research teams manufactured a microdevice in which human neurons derived from induced pluripotent stem cells were injected. What allowed for the formation of the fascicles was the preparation of neural spheroids and a channel narrow enough to align axons, which let them bind to each other.

Spheroids were placed inside the chamber of the device. Axons grew from these spheroids, with some entering the microchannel. Upon this entry, other axons would spontaneously follow, leading to the formation of fascicles that showed properties consistent with those seen in brains. What molecular signaling caused the spontaneous entry remains unexplained, but fascicles were detected in more than 90% of experiments, convincing the researchers the value of the microdevice design.

“The device gives us a means to investigate which factors are responsible for the fascicle assembly,” says Ikeuchi.

Accordingly, they simulated neurodegenerative conditions by introducing into the channels peroxide, and the fascicles responded with morphological changes.

These findings and the relative ease of the experiments suggest the microdevice will be applicable to testing experimental drug compounds that prevent fascicle degeneration caused by disease.


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE